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Lecture 4:
Filters

= Filters
— General Theory
— Continuous Time Filters



Background

= Filters are used to separate signals in the frequency domain, e.g.
remove noise, tune to a radio station, etc
= 5 types of filter
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Ideal Filter

Brick-wall LP filter Brick-wall BP filter
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= Brick-wall filters do not exist in reality
= Real filters can approximate brick-wall filters as close as
required by the filter specification



“Real” LP Filter
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= Parameters required for filter synthesis: A, ®,, A, ©



T(s)=K

Filter Types Using Biquads

a,s° +a,S+a,

b,s’ +bs+h,
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Biquadratic LP Transfer Function

Magnitude Response Phase Response
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Low-pass biquad TF T(s)=K

%+ (w, / Q)s+ w,

- Diagrams normalized to m, =K =1
- Asymptotic fall is -40 dB/dec



Biquad Block Diagram
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= Universal Active Filter: realizes LP, HP, and BP



Tow-Thomas Biquad

L
Realization
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w2 = 1/R,;R,C,C, = Ve 4
Q = Sgrt(R,°C,/R,R,C)) V|,: Inverting LP Filter
K =-R,/R; V., : Non-inverting LP Filter

(R; arbitrarily chosen)



N-th Order Filter

T(s)=K (S=2)(5=2)-(s=2y) Number of poles determines order
(S_ p1)(s_ pz)"'(s_ pN)

= zeros are obviously placed in stopband

= for stability: M<N; N-M zeros at ® = o

= for stability: Re{pi} <0

" no general optimisation algorithms known

= Special Case: all zeros at ® = oo; all pole filter

1
(S_ pl)(s_ p2)°'°(S— pN)

T(s)=K



Example: 5-th Order Filter

Poles: P[1..5] = 1.0e+002 *[-3.0000 + 7.0000i .., Pole-zero map
-3.0000 - 7.0000i . o
-2.0000 + 9.0000i i
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0000 g Passban
g 0
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ZEeros: z[1..4] = 1.0e+003 *[0 + 1.2000i

0 - 1.2000i :
0 + 1.8000i
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Real Axis

T(s)= 50s* +1.44-10%s + 2.3-10"
s° +1500s* +2.17-10°s® +1.58-10°s* + 8.64 -10*'s + 2.47 - 10"
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Example: 5-th Order Filter

50s* +1.44-10%s* +2.3-10*

T(s) =
(5) s° +1500s* +2.17-10%s° +1.58-10°s% + 8.64 -10*'s + 2.47-10*
Bode Diagrams
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Butterworth LP Filter

- Make T(jo) so that: - N: Filter order

, - All pole filter
T(jo)f =— P

N o 2N
(”] oy |T(jw)| has dropped by 3 dB

Normalized Butterworth Polynomials:

For o,=1:

N Denominator of T(s)

(s+1)

(s2+1.1414s+1)

(s+1)(s%+s+1)
(s2+0.765s+1)(s°+1.848s+1)
(s+1)(s°+0.618s+1)(s%+1.618s+1)
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BW-LP Frequency Response
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= maximally flat in passband i.e. the first 2N-1 derivatives of |T(jw)| are O
at ©=0

e |T(jo)| monotonically falling

e not steepest roll-off



BW-LP Design

)
— P
W, = — aldB
(1()amax /10 _ 1)2N Aminl ]
A L~
e e
e e
102mn 110 _q ] j
|Og Amax
1Oamax /10 1 | >
N = O w/rad/s

0, P
2 Iog(p]
a)S

Design a filter so that in the passband | T(jw)| has fallen not more than
by a,.., and in the stopband the minimum attenuationis a_,,
Find @, and N



BW Pole Locations

Jw jw fo jw
=4 n=2>5 | n==6 _ n=7 g
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+77.14°

Poles located on a circle around the origin

v, =90° (2k + N - 1)/N

k=1,2,..,2N

If N is odd, then there is a pole at w =0, if N is even
there are poles at y = £90 °/N

Poles are separated by v =180 °/N



Chebychev LP Filter

N: Filter order

All pole filter
Normalized for o, =1
€. design parameter;
determines ripple

e Make T(jo) so that:

1
1+ EZCNZ(a))

T(jo) =

C,(w)=cos(Ncos™(w)) forw<1
C, (@) =cosh(N cosh™(w)) for o>1

Chebychev Polynomials; Denominator of T(s):
N €£=0.3493; (0.5 dB ripple) ¢=0.5089; (1 dB ripple)

1 (s+2.863) (s+1.965)

2 (s?+1.425s+1.516) (s2+1.098s+1.103)

3 (s+0.626)(s%+0.626s+1.142) (s+0.494)(s%+0.4945+0.994)

4 (s?+0.351s+1.064)(s%+0.845s+0.356) (s2+0.297s+0.987)(s%+0.674s+0.279)

5 (s+0.362)(s2+0.2245+1.036)(s2+0.5865+0.477)  (s+0.289)(s2+0.179s+0.988)(s2+0.468s+0.429)



CC-LP Frequency Response

Properties:
Ripples in Bandpass between
®=0and o = 1/(1+e?)%>
|H(j1)| = 1/(1+€?)°> for all N
|H(0)| =1 for N odd

= 1/(1+€2)%> for N even
steeper roll-off than
Butterworth
Implementation: see
Butterworth example
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Imag Axis

Chebychev Pole Locations

0.18 S : e Minor axis:

3y . ~ a=sinh(L/N sinh?(1/e))
. a l':

0 — * Major axis:

i | | b = cosh(L/N cosh(1/g))

% / N=6;¢=1dB
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Real Axis

-0.8

Poles located on an ellipse around the origin; narrow ellipse
means poles closer to imag. axis = larger ripples. Wider ellipse =
small ripples; approaches Butterworth filter

o, = -sinh(1/N sinh-1(1/ €)) sin((2k-1)n/2N)

o, = -Cosh(1/N sinh-1(1/ €)) cos((2k-1)w/2N)



Motivation

= Switched Capacitor Filters
— Pro: Accurate transfer-functions
— Pro: High linearity, good noise performance
— Con: Limited in speed
* Clock rate must be greater than twice the signal frequency
— Con: Requires anti-aliasing filters
= Continuous-time filters
— Con: Moderate transfer-function accuracy (requires tuning circuitry)
— Con: Moderate linearity
— Pro: High-speed
— Pro: Good noise performance

= Required building blocks:

— Integrators, summers and gain stages
* Allow to realise any rational function, hence any integrated continuous-
time filter
* Any rational transfer function with real-valued coefficients may be
factored into first- and second-order terms



First Order Filter

—

Vou(S8)  k;s+Kk
I - H(s) = = 2
@ “""Ilrlzzut("'jJ Vin(S} S+ My

w

Vin(s) o > 1/

kis

block diagram of a first-order continuous-time filter

= first-order continuous-time filter requires one integrator, one
summer, and up to three gain elements

= |n general: One integrator is required for each pole in an analog
filter



Second Order Filter

0

—0,/Q
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Ko/ 0 o8
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block diagram of a second-order continuous-time filter

= Two integrators are required to realise the two poles
= For stability: ®,/Q must be positive
— One integrator must have feedback around it, hence the integrator is
“lossy”
— Alarge feedback coefficient w,/Q results in a very lossy integrator,

hence the Q is low
* Q<1/2: both poles are real; Q>1/2: poles are complex-conjugate pairs



G,,-C Integrators

transconductor

\ ‘o y = Io _ Gnipr':(mn)l
V. + o0—4 —* _ } o 7 o _ I
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Use a transconductor (or OPA) to build an integrator: i, = G,,,v;
Output current is linearly related to input voltage

Output impedance is ideally infinite

OTA (operational transconductance amplifier) has a high G, value
but is not usually linear



Multiple Input G, -C Integrators
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Example

What Gm is needed for an integrator having a unity gain frequency
of m,= 20 MHz when C=2 pF?

G, = 2mx20MHz x 2pF
= 0.251 mA/V

Or equivalently: G, =1/3.98kQ)

This is related to the unity gain frequency by:
1

2 X Q0MHz = s
3.98k p




Fully Differential Integrators

o +
+ D—h l(__ﬁr 01’0
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_ Io _ GmL.f ® . = Gm
~ ti Zh
sC'y sC, ¢,
vV, =V, )
i =G, 0

o0 moiI

Use a single capacitor between differential outputs
Requires some sort of common-mode feedback to set output

common-mode voltage
Needs some extra caps for compensating common mode feedback

loop



Fully Differential Integrators

i Tac
+ + + — T la Vj)_ B IO/S(zCI)
= 12(’9 Vo = ,/s22C))
i, I 1
_ T - (7 I 2Ig _ GmVi"
vy = 1'{;._1"0 U)ﬁr' = _M 7 5(2(‘1) SC]
= (7 1 Cl

= Use two grounded capacitors
= Still requires common-mode feedback but compensation caps for

common-mode feedback can be the same grounded capacitors



Fully Differential Integrators

}; =
2 % Cp
O +j L1 T
- -J T T o
o ¢, L
I Gm VI' ® Gm

°  5(C,+C,72) i {C,+C,/2)

Integrated capacitors have top and bottom plate parasitic
capacitances

To maintain symmetry, usually 2 parallel caps used as shown above
Note that parasitic capacitance affects time-constant and cause
non-linearity



G,,-C Opamp Integrator

20,
. (
l, (
R pa el SN ot
N > X T
1 1F °
! (
i
2C,
]; _ 210 _ G}HIT." ® _ i
°  5(2C)) sC, ti C_l

Use an extra Opamp to improve linearity and noise performance
Also known as a “Miller Integrator”

The gain of extra Opamp reduces the effect of parasitic capacitances
Cross coupling of output wires to maintain positive integration
coefficient



G,,-C Opamp Integrator

Advantages

= Effect of parasitic caps reduced by opamp gain — more accurate
time-constant and better linearity

= Less sensitive to noise since transconductor output is low
impedance (due to opamp feedback)

= cell drives virtual Gnd — output-impedance of G, cell can be
lower and smaller voltage swing needed

Disadvantages

= Lower operating speed because it now relies on feedback

= Larger power dissipation

= Larger silicon area



First Order Filter

;';-U
v f};(‘g) ° ——{(—{ I/s ° I”OM(S)

le

Vo,5) _ ks +k,
V. (s) s+,

General first-order transfer-function:

=  Built with a single integrator and two feed-ins branches
" ®, sets the pole frequency



First Order Filter

”('X (JHJ'Z
7,,(5) | T
0L .
= G 1(."4

ml

= (Can show that the transfer function is given by (using a current
equation at the output node):

S[ C.Y ) n [ Gml )
: c,+C C,+C
/ om‘(s) sC X+ le 4 X 4 X

V.,-”(S) 5(( +C¥)_ m2 Gmﬁ ]
C,+Cy

= Equating with the block diagram transfer function:

- ]'LU(C + C;{)

ml

G, =0/ (C,+Cy)

m2

k
Cy = {l —lfr.] ](‘AWhere (0<k, <1)



Fully-Differential First-Order Filter

IT
s
E

out

= Same equations as single-ended case but cap sizes doubled

Gml - ]EU(CA * CX)

k
Cy = { 1 ]CAwhere (0<k, <1)

| — fr.] G ., = 1:1){}((7;1 + CX)

m2

= (Can realize k,<0 by cross-coupling wires at C,



Example

= Find fully-diff values when dc gain = 0.5, a pole at 20 MHz and a
zero at 40MHz. Assume C,=2pF

0.25(s +2n X 40MHz) _ 0.25s +2nx I0MH:
(s + 27t x 20MHz) s+ 21t x20MHz

H(S) —

K,=0.25, ky=27 X 107, @wy=4n X 10’

= So:

0.25
- s ’j =
Cy = 2pF X 095 0.667pF

G . = 2nX '10?><2.667pF = 0.168 mA/V

ml

G, = 41X 107}42.667;}}7 = 0335 mA/V



Second Order Filter

—@

-,/ 0

v r'n(S o——4 1/ N 1/s . aVuu.f(‘S‘)

kl + kzs

H(s) = V. .5) _ kys™ +kys+k,

V.I'H(S) 2 mu 2
S T (5)9 R (1)0

o

= Block diagram: see lecture on switched capacitor circuits
— Modified to have positive integrators



Differential Second Order Filter
(Biquad)

G PCa G2 12Ca] O +
+ +

- j >< I!OHF
— -

, et/ 0
Vin _ _] o™ G = ©,C
L — '[_(
20, G, = o,(Cg+Cy)
. W, (Cgz+ Cy)
C,=C 2 |where (0<k,<1) Oms = 0
X B\1_F, U=/,

G4 = (ﬂ'olfjjx’{t}ﬂ

G,s =k (Cp+Cy)

m



Differential Second Order Filter
(Biquad)

= Transfer function:

5'2{ C_‘f ] S[ Gmﬁ ]—I— [ GmZG;u4 )
|lC.+C C..+C C (C,+C
V., ,s) - X B X B 4(Cx B))I

4 ??F(S) 5‘2 4 Gn;?: J+ Gm] GIHZ

= Note that there is a restriction on the high-frequency gain coefficient
k, as in the first-order case

= Note that G _; sets the damping of this biquad

= G, and G, , form two integrators with unity-gain frequencies of ®,/s

H(s) =




Example

Find values for a bandpass filter with a centre frequency of 20 MHz, a
Q value of 5, and a centre frequency gain of 1
Assume C, = C; =2 pF

- (1)0

Vo (s) Gs—=
V H'.’(S) 9 (ﬁo 9
g + .5'5 + ﬂ]a

where G =1 Is the gain at the center frequency



Example

= Since m, = 2w x 20MHz and Q = 5, we find:
®, A
ky = GE = 2.513x10 rad/s

= Since k, and k, are zero, we have C =C_,=0
= The transconductance values are:

G, = fo,C, = 02513 mA/V
G, ,=0(Ch+Cy) = 02513 md/V
G,y =G, s=FkCg=5027uAN

m3 ms



CMOS Tranconductors

= Alarge variety of methods
= Best approach depends on application
= Two main classifications: triode or active transistor based

Triode vs. Active
= Triode based tends to have better linearity
= Active tend to have faster speed for the same operating current



Triode Tranconductors

= Alarge variety of methods
= Best approach depends on application
= Two main classifications: triode or active transistor based

Triode vs. Active
= Triode based tends to have better linearity
= Active tend to have faster speed for the same operating current



Triode Tranconductors

Recall n-channel triode equation

2
oy Vps
ID = u,C or(f {( V GS Vm) JVJDAS' 0

Conditions to remain in triode

VDS< Veff where fo = VGS— V

ef tn

or equivalently: +V
n

6s> Vps
Above models are only reasonably accurate
— Higher order terms are not modelled

Not nearly as accurate as exponential model in BJTs

Use fully-differential architectures to reduce even order distortion

terms — also improves common mode noise rejection
— The third order term dominates



Fixed Bias Triode Tranconductors

= Use a small vy voltage so v?y term goes to zero
— Drain current is approximately linear with applied vjc. Transistor in triode

becomes a linear resistor
N |
B‘ID
dvD.S‘
vps =0

. ) kLl _1
= Resulting in: "ng = (H”C-fm(%)(FGS_ Vm))

DS

= Can use a triode transistor where a resistor would normally be used
— resistance value is tunable



Fixed Bias Triode Tranconductors

Os -

V
DD
R
I I
DR
— +—

V.
ROy, O —
_‘?_[

IS

syo}

i

[Welland, 1994]

= Q9isinthe triode region

— transconductor has a variable transconductance value that can be
adjusted by changing the value of V,

= Moderate linearity

h—e




Fixed Bias Triode Tranconductors

I —I _iO ] + ¢ ] _ i
12l 1 “’o—|E|o1 a, in:"_ovi b Ll [Kwan, 1991]

= Alternative approach with lower complexity and p-channel inputs
— transconductor has a variable transconductance value that can be
adjusted by changing the value of V,



Fixed Bias Triode Tranconductors

VDD
1
ORI OR
I - i N
it Q Q Q: A Vi
Q, |Q R 7 i Qs Q
J— Lo, E—k
IQCP @12
T

G, = Flpcox[:vrv:]Y(VS(_?J?_‘vtDD

= Circuit can be easily made with multiple scaled output currents
= Multiple outputs allow filters to be realized using fewer
transconductors



Biquads Using Multiple Outputs

ATt
2C,
+ b—|%2{:__r1 - o
V.r'}{ J: J_rj >< > J: J_rj Vﬂm
1

m |- ; m2

Can make use of multiple outputs to build a biquad filter
— scale extra outputs to desired ratio

Reduces the number of transconductors
— saves power and die area

Above circuit makes use of Miller integrators



Varying-Bias Triode Transconductor

Ve T
m
= — (ky +4ky), [k

o1 Io1

0 O

=1 =2
% - )

Le Y
V.T“ 'vr
Vs o T ' [Krummenacher, 1988]
Oy

= Linearizes MOSFET differential stage
— Transistors primarily in triode region



Varying-Bias Triode Transconductor

= gates of Q; and Q, connected to the differential input (and not to bias

voltage)
= Q, and Q,undergo varying bias conditions to improve linearity
= |t can be shown that
4?{1;’{%%
G = ;
"k + Ay Jk
= With C

" Note, G, is proportional to square-root of as opposed to linear
relation for a BJT transconductor
" Transconductance can be tuned by changing bias current |.



Drain-Source Fixed-Bias
Transconductor

2
o 7! , V'ps
'D ~ HNCm(L I( VGS 4 )IDS_ 7 ]

= |f v is kept constant, then iy varies linearly with v

— Model is too simple, neglecting second order effects such as velocity
saturation, mobility degradation

Possible implementation using fully differential architecture

4 VC C
510 &)f 1

—
0 O

Jral ir(:nl

O3 Q4_ﬁ
Oy 0O, :‘? /2 7
PR )

=

y

v ;-/’ 2
Veur

]



Drain-Source Fixed-Bias
Transconductor

Can realize around 50 dB linearity (not much better since model is not
that accurate)

Requires a fully-differential structure to cancel even-order terms

V. sets vy voltage

Requires a non-zero common-mode voltage on input

Note that the transconductance is proportional to v
— For vy small the bias current |, is also approximately proportional to vy



Alternative;: MOSTFET-C Filters

= Gm-C filters are most commonly used but MOSFET-C have advantages
in BICMOS for low power applications

= MOSFET-C filters similar to active-RC filters but resistors replaced with
MOS transistors in triode

Generally slower than Gm-C filters since opamps capable of driving
resistive loads required

Rely on Miller integrators

Two main types — 2 transistors or 4 transistors



Alternative;: MOSTFET-C Filters

= Gm-C filters are most commonly used but MOSFET-C have advantages
in BICMOS for low power applications
MOSFET-C filters similar to active-RC filters but resistors replaced with
MOS transistors in triode

— Knowledge and architecture of active RC filters can be transferred
Generally slower than Gm-C filters since Opamps capable of driving
resistive loads required
Rely on Miller integrators
Two main types — 2 transistors or 4 transistors



Two Transistor Integrators
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Two Transistor Integrators

For resistor integrator can be shown
B | ‘ | ‘
Vdiff — SR, Cj(l'pl N 1’”1) * SR Cf“pZ N 1;}12)

i

— If negative integration is required — cross-couple wires

For MOSFET-C integrator, assuming transistors are biased in triode
region, the small-signal resistance is given by:

- — I’Irr 5 zy _1
ps — -unCﬂ:r f U’GS_ / r‘n)

Therefore, the differential output of the MOSFET-C integrator is:

1 1
Viyege = —————(v 1 —v )+ ———(v 5=V 5)
diff e 1 nl ) 1 2 n2
s'ps1Cr P STps2Cr ¥

| (MY, Y
With: "Dsi — (Ha.‘r(' O.T(E )( y c V.T =V m])

I



General MOSFET-C Biquad Filter

#6;
n s
C 7 ~
- T 2
L Gy L @,
. + o TL \}.-l_ T2 \:\-I_ o+
! L ¥ 1 , 1V
Lo TL +> >< 7793 +>' 0
G, | ¥ G, | “c
[ R i
C4 C. 1 Gs
- L —
7Y
Equivalent active RC half circuit
A G4
- i W
- c. C G G1G
Gg Cs 1 .2 g2 1Y3
0 TN S Vo) _ Cg° ' Cg° ' CaC
U—"ql"v"r [ Vo Vi - G5 G,G
! i) s242s4+ 22
= L Cp CaCp




Tuning Circuitry

Tuning can often be the MOST difficult part of a continuous-time
integrated filter design

Tuning required for continuous-time integrated filters to account for
capacitance and transconductance variations — 30 percent time-
constant variations

Must account for process, temperature, aging, etc.

While absolute tolerances are high, ratio of two like components can
be matched to under 1 percent

Note that SC filters do not need tuning as their transfer-function
accuracy set by ratio of capacitors and a clock-frequency



Indirect Tuning

transconductance-C filter
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tuning circuitry

Most common method — build an extra transconductor and tune it
Same control signal is sent to filter’s transconductors which are scaled

versions of tuned extra
Indirect since actual filter’s output is not measured



Constant Transconductance
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= Can tune Gm to off-chip resistance and rely on capacitor absolute
tolerance to be around 10 percent



