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Lecture 4:
Filters

 Filters
– General Theory
– Continuous Time Filters



 Filters are used to separate signals in the frequency domain, e.g. 
remove noise, tune to a radio station, etc

 5 types of filter
– Low pass

– High pass

– Band pass

– Band stop/reject

– All pass
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Ideal Filter

 Brick-wall filters do not exist in reality
 Real filters can approximate brick-wall filters as close as 

required by the filter specification
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“Real” LP Filter
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maximum 
deviation 
from 0dB;
“Bandpass ripple”

wp/ws: Measure for filter sharpness;
filter selectivity

Amin
minimum 
attenuation

 Parameters required for filter synthesis: Amax, wp, Amin, ws



Filter Types Using Biquads
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Biquadratic LP Transfer Function
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sQs
KsTLow-pass biquad TF

Magnitude Response Phase Response

- Diagrams normalized to w0 = K = 1
- Asymptotic fall is -40 dB/dec



Biquad Block Diagram

2

00

2

2

0

)/()(

)(
)(

ww

w




sQs
K

sV

sV
sT

IN

LP

-w0/s -w0/s+

-1/Q

- -
K

Vin VLP

VBP
VHP

(K either pos. or neg.)

 Universal Active Filter: realizes LP, HP, and BP



Tow-Thomas Biquad
Realization
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’: Non-inverting LP Filter
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N-th Order Filter
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 Number of poles determines order

 zeros are obviously placed in stopband
 for stability: MN; N-M zeros at w = 
 for stability: Re{pi} < 0
 no general optimisation algorithms known
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 Special Case: all zeros at w = ; all pole filter
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Poles: P[1..5] =  1.0e+002 *[-3.0000 + 7.0000i

-3.0000 - 7.0000i

-2.0000 + 9.0000i

-2.0000 - 9.0000i

-5.0000 ]

Zeros: Z[1..4] = 1.0e+003 *[0 + 1.2000i

0 - 1.2000i

0 + 1.8000i

0 - 1.8000i]

Passband



Example: 5-th Order Filter
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Butterworth LP Filter

- N: Filter order

- All pole filter

w0: |T(jw)| has dropped by 3 dB

For w0=1:

N Denominator of T(s)
1 (s+1)

2 (s2+1.1414s+1)

3 (s+1)(s2+s+1)

4 (s2+0.765s+1)(s2+1.848s+1)

5 (s+1)(s2+0.618s+1)(s2+1.618s+1)
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- Make T(jw) so that:

Normalized Butterworth Polynomials:



BW-LP Frequency Response

Frequency (rad/sec)

|T(jw)| (dB)

 maximally flat in passband i.e. the first 2N-1 derivatives of |T(jw)| are 0 
at w=0

• |T(jw)| monotonically falling

• not steepest roll-off



BW-LP Design

 Design a filter so that in the passband |T(jw)| has fallen not more than 
by amax and in the stopband the minimum attenuation is amin

 Find w0 and N

a/dB
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BW Pole Locations

• Poles located on a circle around the origin

• k = 90 (2k + N - 1)/N     k = 1,2,…,2N

• If N is odd, then there is a pole at  = 0, if N is even 
there are poles at  = 90 /N

• Poles are separated by  = 180 /N



Chebychev LP Filter

• N: Filter order
• All pole filter
• Normalized for w0 = 1
• e: design parameter; 

determines ripple

N   e0.3493; (0.5 dB ripple) e0.5089; (1 dB ripple)
1  (s+2.863) (s+1.965)

2  (s2+1.425s+1.516) (s2+1.098s+1.103)

3  (s+0.626)(s2+0.626s+1.142) (s+0.494)(s2+0.494s+0.994)

4  (s2+0.351s+1.064)(s2+0.845s+0.356) (s2+0.297s+0.987)(s2+0.674s+0.279)

5  (s+0.362)(s2+0.224s+1.036)(s2+0.586s+0.477) (s+0.289)(s2+0.179s+0.988)(s2+0.468s+0.429)
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• Make T(jw) so that:

Chebychev Polynomials; Denominator of T(s):

1))(coscos()( 1   www forNCN

1))(coshcosh()( 1   www forNCN
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CC-LP Frequency Response

N = 5; e = 0.5 dB

e = 3 dB

 Properties:
 Ripples in Bandpass between 
 w = 0 and w = 1/(1+e2)0.5

 |H(j1)| = 1/(1+e2)0.5 for all N
 |H(0)| = 1 for N odd
 = 1/(1+e2)0.5 for N even
 steeper roll-off than 

Butterworth
 Implementation: see 

Butterworth example
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Chebychev Pole Locations

 Poles located on an ellipse around the origin; narrow ellipse 
means poles closer to imag. axis  larger ripples. Wider ellipse 
small ripples; approaches Butterworth filter

• sk = -sinh(1/N sinh-1(1/ e sin((2k-1)p/2N)

• wk = -cosh(1/N sinh-1(1/ e cos((2k-1)p/2N)
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Motivation

 Switched Capacitor Filters
– Pro: Accurate transfer-functions
– Pro: High linearity, good noise performance
– Con: Limited in speed

• Clock rate must be greater than twice the signal frequency

– Con: Requires anti-aliasing filters

 Continuous-time filters
– Con: Moderate transfer-function accuracy (requires tuning circuitry)
– Con: Moderate linearity
– Pro: High-speed
– Pro: Good noise performance

 Required building blocks:
– Integrators, summers and gain stages

• Allow  to realise any rational function, hence any integrated continuous-
time filter

• Any rational transfer function with real-valued coefficients may be 
factored into first- and second-order terms



First Order Filter

 first-order continuous-time filter requires one integrator, one 
summer, and up to three gain elements

 In general: One integrator is required for each pole in an analog
filter

block diagram of a first-order continuous-time filter



Second Order Filter

 Two integrators are required to realise the two poles
 For stability: w0/Q must be positive

– One integrator must have feedback around it, hence the integrator is 
“lossy”

– A large feedback coefficient w0/Q results in a very lossy integrator, 
hence the Q is low
• Q<1/2: both poles are real; Q>1/2: poles are complex-conjugate pairs

block diagram of a second-order continuous-time filter



Gm-C Integrators

 Use a transconductor (or OPA) to build an integrator: 𝑖𝑜 = 𝐺𝑚𝑣𝑖
 Output current is linearly related to input voltage
 Output impedance is ideally infinite
 OTA (operational transconductance amplifier) has a high Gm value 

but is not usually linear



Multiple Input Gm-C Integrators



Example

 What Gm is needed for an integrator having a unity gain frequency
of wti= 20 MHz when C=2 pF?

 Or equivalently: Gm=1/3.98kW

 This is related to the unity gain frequency by:



Fully Differential Integrators

 Use a single capacitor between differential outputs
 Requires some sort of common-mode feedback to set output 

common-mode voltage
 Needs some extra caps for compensating common mode feedback 

loop



Fully Differential Integrators

 Use two grounded capacitors
 Still requires common-mode feedback but compensation caps for 

common-mode feedback can be the same grounded capacitors



Fully Differential Integrators

 Integrated capacitors have top and bottom plate parasitic 
capacitances

 To maintain symmetry, usually 2 parallel caps used as shown above
 Note that parasitic capacitance affects time-constant and cause 

non-linearity



Gm-C Opamp Integrator

 Use an extra Opamp to improve linearity and noise performance
 Also known as a “Miller Integrator”
 The gain of extra Opamp reduces the effect of parasitic capacitances
 Cross coupling of output wires to maintain positive integration 

coefficient



Gm-C Opamp Integrator

Advantages
 Effect of parasitic caps reduced by opamp gain — more accurate 

time-constant and better linearity
 Less sensitive to noise since transconductor output is low 

impedance (due to opamp feedback)
 cell drives virtual Gnd — output-impedance of Gm cell can be 

lower and smaller voltage swing needed
Disadvantages
 Lower operating speed because it now relies on feedback
 Larger power dissipation
 Larger silicon area



First Order Filter

General first-order transfer-function:

 Built with a single integrator and two feed-ins branches
 w0 sets the pole frequency



 Can show that the transfer function is given by (using a current 
equation at the output node):

 Equating with the block diagram transfer function:

First Order Filter



 Same equations as single-ended case but cap sizes doubled

 Can realize k1<0 by cross-coupling wires at Cx

Fully-Differential First-Order Filter



 Find fully-diff values when dc gain = 0.5, a pole at 20 MHz and a 
zero at 40MHz. Assume CA=2pF

 So:

Example

K1=0.25, k0=2p×107, w0=4p×107



Second Order Filter

 Block diagram: see lecture on switched capacitor circuits
– Modified to have positive integrators



Differential Second Order Filter
(Biquad)



Differential Second Order Filter
(Biquad)

 Transfer function:

 Note that there is a restriction on the high-frequency gain coefficient 
k2 as in the first-order case

 Note that Gm3 sets the damping of this biquad
 Gm1 and Gm2 form two integrators with unity-gain frequencies of w0/s



Example

 Find values for a bandpass filter with a centre frequency of 20 MHz, a 
Q value of 5, and a centre frequency gain of 1

 Assume CA = CB = 2 pF

 where G =1 Is the gain at the center frequency



Example

 Since w0 = 2p × 20MHz and Q = 5, we find:

 Since k0 and k2 are zero, we have Cx = CmA = 0
 The transconductance values are:



CMOS Tranconductors

 A large variety of methods
 Best approach depends on application
 Two main classifications: triode or active transistor based

Triode vs. Active
 Triode based tends to have better linearity
 Active tend to have faster speed for the same operating current



Triode Tranconductors

 A large variety of methods
 Best approach depends on application
 Two main classifications: triode or active transistor based

Triode vs. Active
 Triode based tends to have better linearity
 Active tend to have faster speed for the same operating current



Triode Tranconductors
 Recall n-channel triode equation

 Conditions to remain in triode

 or equivalently: 

 Above models are only reasonably accurate
– Higher order terms are not modelled

 Not nearly as accurate as exponential model in BJTs
 Use fully-differential architectures to reduce even order distortion 

terms — also improves common mode noise rejection
– The third order term dominates



Fixed Bias Triode Tranconductors
 Use a small vDS voltage so v2

DS term goes to zero
– Drain current is approximately linear with applied vDS. Transistor in triode 

becomes a linear resistor

 Resulting in:

 Can use a triode transistor where a resistor would normally be used 
— resistance value is tunable



Fixed Bias Triode Tranconductors

 Q9 is in the triode region
– transconductor has a variable transconductance value that can be 

adjusted by changing the value of Vgs9

 Moderate linearity

[Welland, 1994]



Fixed Bias Triode Tranconductors

 Alternative approach with lower complexity and p-channel inputs
– transconductor has a variable transconductance value that can be 

adjusted by changing the value of Vgs9

[Kwan, 1991]



Fixed Bias Triode Tranconductors

 Circuit can be easily made with multiple scaled output currents
 Multiple outputs allow filters to be realized using fewer 

transconductors



Biquads Using Multiple Outputs

 Can make use of multiple outputs to build a biquad filter
– scale extra outputs to desired ratio

 Reduces the number of transconductors
– saves power and die area

 Above circuit makes use of Miller integrators



Varying-Bias Triode Transconductor

 Linearizes MOSFET differential stage
– Transistors primarily in triode region

[Krummenacher, 1988]



Varying-Bias Triode Transconductor

 gates of Q3 and Q4 connected to the differential input (and not to bias 
voltage)

 Q3 and Q4 undergo varying bias conditions to improve linearity
 It can be shown that

 With

 Note, Gm is proportional to square-root of as opposed to linear 
relation for a BJT transconductor

 Transconductance can be tuned by changing bias current Ii



Drain-Source Fixed-Bias 
Transconductor

 If vDS is kept constant, then iD varies linearly with vGS

– Model is too simple, neglecting second order effects such as velocity 
saturation, mobility degradation

 Possible implementation using fully differential architecture



Drain-Source Fixed-Bias 
Transconductor

 Can realize around 50 dB linearity (not much better since model is not 
that accurate)

 Requires a fully-differential structure to cancel even-order terms
 VC sets vDS voltage 
 Requires a non-zero common-mode voltage on input
 Note that the transconductance is proportional to vDS

– For vDS small the bias current I1 is also approximately proportional to vDS



Alternative: MOSTFET-C Filters

 Gm-C filters are most commonly used but MOSFET-C have advantages 
in BiCMOS for low power applications

 MOSFET-C filters similar to active-RC filters but resistors replaced with 
MOS transistors in triode

 Generally slower than Gm-C filters since opamps capable of driving 
resistive loads required

 Rely on Miller integrators
 Two main types — 2 transistors or 4 transistors



Alternative: MOSTFET-C Filters

 Gm-C filters are most commonly used but MOSFET-C have advantages 
in BiCMOS for low power applications

 MOSFET-C filters similar to active-RC filters but resistors replaced with 
MOS transistors in triode
– Knowledge and architecture of active RC filters can be transferred

 Generally slower than Gm-C filters since Opamps capable of driving 
resistive loads required

 Rely on Miller integrators
 Two main types — 2 transistors or 4 transistors



Two Transistor Integrators

Banu 1983



Two Transistor Integrators

 For resistor integrator can be shown

– If negative integration is required — cross-couple wires

 For MOSFET-C integrator, assuming transistors are biased in triode 
region, the small-signal resistance is given by:

 Therefore, the differential output of the MOSFET-C integrator is:

With:



General MOSFET-C Biquad Filter

Equivalent active RC half circuit

𝑣0 𝑠

𝑣𝑖 𝑠
=

𝐶1
𝐶𝐵

𝑠2 +
𝐺2
𝐶𝐵

𝑠 +
𝐺1𝐺3
𝐶𝐴 𝐶𝐵

𝑠2 +
𝐺5
𝐶𝐵

𝑠 +
𝐺3𝐺4
𝐶𝐴𝐶𝐵



Tuning Circuitry

 Tuning can often be the MOST difficult part of a continuous-time 
integrated filter design

 Tuning required for continuous-time integrated filters to account for 
capacitance and transconductance variations — 30 percent time-
constant variations

 Must account for process, temperature, aging, etc.
 While absolute tolerances are high, ratio of two like components can 

be matched to under 1 percent
 Note that SC filters do not need tuning as their transfer-function 

accuracy set by ratio of capacitors and a clock-frequency



Indirect Tuning

 Most common method — build an extra transconductor and tune it
 Same control signal is sent to filter’s transconductors which are scaled 

versions of tuned extra
 Indirect since actual filter’s output is not measured



Constant Transconductance

 Can tune Gm to off-chip resistance and rely on capacitor absolute 
tolerance to be around 10 percent

𝐺𝑚 =
1

𝑅𝑒𝑥𝑡


